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Background: The Darwinian concept of ‘survival of the fittest’ has inspired the
development of evolutionary optimization methods to find molecules with
desired properties in iterative feedback cycles of synthesis and testing. These
methods have recently been applied to the computer-guided heuristic selection
of molecules that bind with high affinity to a given biological target. We
describe the optimization behavior and performance of genetic algorithms
(GAs) that select molecules from a combinatorial library of potential thrombin
inhibitors in ‘artificial molecular evolution’ experiments, on the basis of biological
screening results. 

Results: A full combinatorial library of 15,360 members structurally biased
towards the serine protease thrombin was synthesized, and all were tested for
their ability to inhibit the protease activity of thrombin. Using the resulting large
structure–activity landscape, we simulated the evolutionary selection of potent
thrombin inhibitors from this library using GAs. Optimal parameter sets were
found (encoding strategy, population size, mutation and cross-over rate) for this
artificial molecular evolution. 

Conclusions: A GA-based evolutionary selection is a valuable combinatorial
optimization strategy to discover compounds with desired properties without
needing to synthesize and test all possible combinations (i.e. all molecules). GAs
are especially powerful when dealing with very large combinatorial libraries for
which synthesis and screening of all members is not possible and/or when only a
small number of compounds compared with the library size can be synthesized
or tested. The optimization gradient or ‘learning’ per individual increases when
using smaller population sizes and decreases for higher mutation rates.

Introduction
The idea of generating a large number of diverse small
molecules by combinatorial chemistry was first proposed
by Ivar Ugi in 1961 [1] using the Ugi four-component
reaction (4CR) and the systematic, combinatorial variation
of the corresponding starting materials. Thus, by using
100 different amines, aldehydes, carboxylic acids and
isonitriles, it is theoretically possible to generate
100 million different reaction products. This number is
close to the number of different, unique antibodies that is
encoded in the DNA of the human genome for the
primary immune response. In analogy to the library of pos-
sible antibodies, one could argue that within that library of
100 million Ugi-type 4CR products one might find
binding ligands for almost any target protein; however, it
is still far beyond our practical possibilities to synthesize
and evaluate individually the biological properties of such
a large number of small molecules. 

An astonishingly efficient, combinatorial process is used by
nature both to store the genomic information for all possi-
ble primary antibodies and to find those antibodies that
bind tightly to a given target molecule. Thus, the variable
DNA sequence of a unique antibody is assembled from a

predefined set of 100–1000 different V, J and D gene seg-
ments on the chromosomal DNA — a combinatorial prin-
ciple, similar to the above Ugi-type multi-component
condensation reaction. In the primary immune response to
the antigen, a whole library of antibodies is generated. Out
of this initial population, antibodies are selected that bind
with a certain affinity to the given antigen. Starting with
this binding sub-population, new antibodies, which are not
encoded on the chromosomal DNA, are generated by
somatic hypermutations. The entire process is repeated
several times until high-affinity antibodies are generated.
This evolutionary immune response is therefore an affin-
ity-driven feedback cycle that yields antibodies with high
affinity to the target antigen [2].

Similarly, medicinal chemistry, aiming at the discovery of
high-affinity ligands for target molecules, is about under-
standing the relationship between the abstraction ‘chemi-
cal structure’ and the properties of the corresponding real
molecules, called structure–activity relationships (SARs).
Many methods have been introduced to aid the explicit
understanding of SARs, such as molecular modeling or
comparative molecular field analysis (CoMFA). An alter-
native to these methods is the use of heuristic method
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evolutionary algorithms that implicitly discover the rela-
tionship between chemical structures and biological prop-
erties. Artificial evolutionary selection methods have been
developed, for example by selecting peptides (e.g. phage
display or antibodies) or oligonucleotides (SELEX proce-
dure) that bind to the target of choice by using nature’s
amplification and selection machinery. A method that
selects useful, ‘drug-like’ small molecules from very large
combinatorial compound libraries by an efficient evolu-
tionary process would, however, be of even higher interest
for many applications in drug discovery, crop protection
and material sciences. 

The concept of darwinian selection and evolution has
inspired the development and application of evolutionary
programming [3] or genetic algorithms (GAs) [4] to find
optimal solutions for combinatorial problems [5] in multi-
dimensional and very large search spaces. Artificial evolu-
tionary optimization has recently been introduced to find
molecules with high biological activity from large virtual
combinatorial libraries of molecules without the need to
synthesize and to determine the biological activity of all
members of this library. Previously we reported the selec-
tion of thrombin inhibitors from a combinatorial library of
Ugi-type reaction products [6] using a GA. A similar
approach has also been used to find peptidic trypsin
inhibitors [7] and better substrates for stromelysin [8]. The
iterative synthesis and biological testing of small sub-
libraries from a large virtual library was combined with the
measurement of the biological activity of individual
members of those sub-libraries. Biological activities as a
selection feedback for the GA were used to propose new
molecules for synthesis. After several cycles of synthesis
and testing, molecules with desired properties were found. 

Here we try to address problems that have not been
solved by those early examples. What is the optimization
efficiency of GAs in finding the best molecules out of
such a combinatorial library? What are suitable parameters
for a GA-driven darwinian-like evolutionary process for
small molecules? 

To answer these questions, it is necessary to know
a priori all solutions, that is the biological affinities of all
members of the library against the target protein of inter-
est. The resulting structure–activity landscape can than

be used as a model for very large libraries comprising the
search space for GA-driven experiments. By running GAs
within this search space a posteriori, we can also optimize
various parameters of the GAs and evaluate their influ-
ence on the search efficiency of GAs in simulated mol-
ecular evolution experiments. 

We have therefore synthesized a complete combinatorial
library of 15,360 parallel Ugi-type reaction products having
a structural bias towards the serine protease thrombin as a
test case. We determined the biological activity of all
members of this library with a chromogenic enzyme assay.

Results
Library synthesis and testing
Thrombin was selected as the target protein for the com-
binatorial optimization of active-site inhibitor molecules
because many structural requirements of this enzyme are
known. We previously showed that N,N′-disubstituted
amino-acid amides 11 are potentially interesting structures
for highly active thrombin inhibitors [6]. These molecules
are accessible by an Ugi-type three-component reaction
(3CR) using isonitriles, aldehydes and amines as the reac-
tion components (Figure 1).

We chose 80 aldehydes (AA11–AA8800), 12 amines (BB11–BB1122)
and 16 isonitriles (CC11–CC1166) for synthesis to give a combi-
natorial library of 80 × 12 × 16 = 15,360 reaction products.
The respective isonitriles and aldehydes were selected to
cover a broad range of chemical diversities by using large
and small aliphatic, aromatic, heteroaromatic, benzylic and
substituents with hydrogen-bond donor and acceptor sub-
stituents. The amines BB11–BB1122 were chosen to provide a
structural bias towards the thrombin arginine-binding S1
pocket. Most of these arginine-mimetic amines were
already known to have an affinity for thrombin in the
higher micromolar range. Because of this structural bias,
one can expect that the molecules of this library will cover
a broad range of affinities towards thrombin.

The 15,360 reactions were performed in parallel using
384-well plates and a final reaction volume of 15 µl. Solu-
tions of the corresponding starting materials in methanol
(0.1 M) were dispensed with a robotics system. A complete
conversion in all reactions was assumed in order to calculate
the inhibitory concentrations (IC50) of the crude reaction
products which were determined using a conventional chro-
mogenic assay using the paranitroanilide of D-Phe–Gly–Arg
as substrate. The respective molecular weights were calcu-
lated for all 15,360 reaction products and verified using ion-
spray mass spectroscopy. The expected molecular mass
ions of 11 were found with high intensity in about 60% of the
15,360 products (full details will be published elsewhere).
Three amines (BB00, BB22 and BB33) gave the imidazo[1,2-a]pyri-
dine derivatives 22 (Figure 2) instead of 11 in a [1 + 4]
cycloaddition reaction as described previously [9].
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Figure 1

An Ugi-type three-component reaction was used to generate the library.

R1 N
+

C– R2

H

O
R

3
NH2+ + NH

R2

N
H

O R
3

R
1 1

Chemistry & Biology

cm7607.qxd  06/07/2000  03:47  Page 434



Figure 3 shows the IC50 values of all reaction products,
coded by spectral colors in a range between 100 µM (red)
and 100 nM (green). Values outside of this range are
coded brown (IC50 > 100 µM) and blue (IC50 < 100 nM).
Each rectangle corresponds to one amine BB, whereas the
aldehydes and isonitriles are varied in the vertical and hor-
izontal direction, respectively. Thus, Figure 3 represents a
two-dimensional projection of the three-dimensional SAR.
Re-synthesis of the most active combination (aldehyde
AA6699, amine BB77 and isonitrile CC33) on a larger scale gave 33
with an isolated yield of 40%. Re-testing the racemic com-
pound 33 with a full dose–response curve yielded a ki value
of 2 nM against thrombin (IC50 values are dependent on
the concentrations of substrate and protein used, whereas
Ki values are independent of these concentrations and can
be estimated from the IC50 value by a constant factor. IC50
values were estimated for all compounds by measuring the
thrombin inhibition at 100, 10, 1, 0.1 and 0 µM for each of
the 15,360 products. The IC50 value of inactive com-
pounds was set arbitrarily at 150 µM). In summary, out of
all 15,360 products, only 9 (0.059%) had IC50 values below
1 µM, 54 (0.352%) were between 1 µM and 10 µM and
675 (4.395%) were between 10 µM and 100 µM. Hence,
the fraction of active products in the library is rather low
(<5%) despite the biased nature of our choice of amines.

Encoding molecules
Natural evolutionary systems are composed of two layers:
encoding (genotypes) and realization (phenotypes). Both
layers are connected by an operator that provides the
recipe for how to construct the phenotype from the geno-
type. For example, the triplet UUC in a gene encodes for
the molecular building-block phenylalanine in proteins. It
is important to note that the genotype does not reflect any
physico-chemical property of the encoded phenotype
directly. Evolutionary selection in biological systems may
therefore be regarded as a combinatorial optimization
system that uncovers implicitly the relationship between
the sequence of a genome and the fitness of its phenotype. 

Artificial evolution for small molecules requires the imple-
mentation of genes for small molecules. By convention,
molecules are generally represented on the basis of valence-
bond theory [10]. Contrary to such general encoding
schemes, combinatorial libraries allow an efficient encoding
using arbitrary encoding schemes. Binary strings, alpha-
numeric values or real-valued strings have been used to
encode the starting materials of a combinatorial library [10].

The encoding scheme that is used may have an impact
on the outcome of the artificial evolution optimization
experiment. Thus, cross-over applied to genomes in
which the variable parts of a compound structure are
encoded by a binary representation may result in a differ-
ent outcome to cross-over applied to a real-valued repre-
sentation. In a real-valued encoding scheme, a cross-over
may intersect the genome only in between these real-
values (i.e. building blocks or substituents). In the real-
valued representation, the building blocks of the
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Figure 2

Side-product 2 is formed with the amines B0, B2 and B3. Product 3 is
a 2 nm inhibitor of thrombin.
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Figure 3

Color-coded thrombin inhibitory concentrations of the 12 × 16 × 80 library. 

N

NH2

NH2        

NH2

NH NH2       

N

NH2

NH2        

N

NH2

NH2
NH

       
NH NH2

NH2

   
NH NH2

NH2

 B0  B1  B2   B3   B4    B5

B6  B7  B8   B9   B10   B11

NH NH2

NH2

OH

    
NH NH2

NH2

 
NH2

NH

NH2

OHO

NH2

NH

NH2

NH

NH2

NH

NH2

NH

O

OH

NH NH2

NH2

Chemistry & Biology

cm7607.qxd  06/07/2000  03:47  Page 435



respective parents are exchanged among the children but
both their number and nature will remain the same. In
the binary string representation, however, a cross-over
may also take place within the binary string that repre-
sents a given building block. As a result, the children
might contain different building blocks to their parents.
This is also the case for the encoding of proteins in
nature, for example, a cross-over in-between the triplet
UUC (phenylalanine), such as UU/C, may result in the
novel building block UUA (leucine) which was not
present in the DNA of the parent protein encoding. This
cross-over strategy has the effect that the cross-over oper-
ator is effectively a mixture of cross-over and mutation
where the mutation probability increases with an increas-
ing length of the encoding string for a given building
block. For example, there are four possibilities to cut
UUC: at the beginning and the end (/UUC or UUC/) as
well as twice in between (U/UC or UU/C). Whereas the
first strategy of replacing only whole building blocks
appeals more to the intuition of chemists, the latter is
more similar to natural cross-over in DNA. 

For our artificial evolutionary experiments we used both
binary and real-valued representations of the correspond-
ing building blocks. For the binary representation, the
educt numbers were first converted into a binary number,
for example educt AA55 was encoded by a ‘gene’ 0000101.
Next, the complete bit string for the reaction product was
constructed — in our case from the three binary numbers
of the aldehyde, amine and isonitrile — resulting in the bit
string 00000000110011  11001100  00001100 for the reaction of starting mate-
rials AA55, BB1100 and CC22. For the real-valued decimal represen-
tation, the genome of the final molecule is simply 55 1100 22.

The genetic algorithm
Genetic algorithms have been applied to a series of prob-
lems in molecular diversity and combinatorial chemistry.
The building-block hypothesis [3] assumes that when
low-order, ‘fit’ schemes (building blocks, or in our context
the starting materials AA, BB and CC) are combined, schemes
of higher order and better fitness may result. The ability
to produce meaningful solutions by combining building
blocks was suggested to be a primary source of the search
power of the GAs [5].

Operators for artificial GAs have been introduced on the
basis of their natural counterparts, explained below.

Replication
Nature replicates good solutions in each generation in
order to remember them; however, computer-based
approaches allow a more efficient way to remember good
solutions. Each experimental result may be stored and
used at a later time without the need for repeated synthe-
sis and biological testing. The ‘replication’ of 00000000110011
11001100  00001100 or 55  1100  22 would yield the same bit string.

Mutation
This operator changes a bit in the chromosome with a
certain probability; for example, 00000000110011  11001100  00001100 or 55
1100  22 may be mutated to 00000000110011  11001100  1001100 or AA55BB1100CC99.
In our GA implementation, a 1% mutation rate per bit for
the binary encoding corresponds to an 15% mutation rate
for the whole, 15-bit chromosome.

Cross-over
This operator takes two strings, cuts each of them into two
parts and reassembles them to arrive at two new valid
strings. For binary strings, this may result in 00000000110011  1100//1100
00001100 and 0010101 11//10 1011 to yield 00000000110011 110010 1011
and 0010101 111100 00001100  as children. For real-valued strings,
55  1100  22  and 2211  1144  1111  may give 55  1100  1111 and 2211  1144  22. Care was
taken to ensure the same cutting probability between A
and C strings, by using a virtually ‘circular’ bit string.

Selection and generation of the new population
The GA was set up by randomly choosing N strings encod-
ing for N reaction products in the starting population. The
experimental biological results for the corresponding reac-
tion products were looked up in the result database of all
15,360 products and the encoding strings were than sorted
according to their biological activities. The N best strings
of the list of all parent generations were afterwards used to
generate N new strings (child population) with a given
cross-over and a given mutation probability. For cross-
over, two individuals were chosen randomly from this list.
The generation of already evaluated individuals (‘replica-
tion’) was not allowed for the reasons outlined above and
was contrary to other procedures [7,8]. As the N best com-
pounds were always remembered and used to generate N
new children, this method could be called the ‘best half’
as opposed to the ‘best third’ method [10]. This general
approach is the same as in our previous experiment [6]
that used binary encoding, a population size of 20, a
crossover rate of 100% per chromosome and a mutation
rate of 1% for each bit. 

Simulated evolution experiments
For the first time, the knowledge the biological activities
of the complete combinatorial library allows us to study
the optimization behavior of GAs on a real structure–activ-
ity landscape. The goal was thus to find optimal GA para-
meters that discover the best reaction products out of the
15,360 with a minimum number of experiments.

Finding combinations of optimal parameters for a GA is a
combinatorial optimization problem by itself and depends
also on the structure of the search space [5]. In this study,
the search space is given by the four-dimensional struc-
ture–activity landscape spanned by the starting materials AA,
BB and CC and the corresponding IC50 values. Variable para-
meters of the GA were generation size, mutation rate and
cross-over strategy. In order to investigate the influence of
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these parameters on the optimization behavior, each para-
meter set was used in 100 parallel runs and the averages of
the various results were calculated. Population sizes of 5,
10, 20 or 80 and various mutation rates were investigated.
Cross-overs that allow cutting between strings that encode
for starting materials AA, BB and CC (e.g. 0000101 //  1010 0010),
which is the only option for real valued encoding, or
crossovers that also allow cutting within these bit strings
(e.g. 0000101 10 //  10 0010) were used.

All results were compared with a ‘random’ screening
method in which all molecules are tested sequentially
until suitable molecules are found. This method is the
equivalent to ‘high-throughput screening’ (HTS) of com-
pound libraries, which was simulated by a repeated
random selection of new products from the 15,360-product
library and building up a list of N best compounds as
described above.

The influence of the generation size N (5, 10, 20 and 80)
on the average fitness of the N best products at a given
generation by applying crossover by cutting between
binary educt genes (option c) and a fixed mutation rate of
1% at each bit of the bit string is shown in Figure 4. 

Thus, the GA-driven selection of new members was able
to find considerably more active compounds compared
with random screening within the first few generations.
The slopes of the GA curves are steeper at early genera-
tion owing to the ‘learning’ process and decrease again
when many of the limited number of active compounds
have been discovered. Finally, all curves arrive at the

same point when all compounds of the library have been
evaluated, which is the case in our example in generation
768 using a population size of 20. To quantify the benefit
of an evolutionary GA strategy as opposed to random
screening we may introduce a performance criterion P :

P = (mGA / NGA ) / (mrandom / Nrandom) (1)

where mGA and mrandom are the slopes of the performance
curves for the GA and random selection (HTS screen-
ing) normalized with the respective generation sizes. P
represents the average activity increase that was
achieved by an individual in one evolutionary cycle
using the given GA parameters. The maximum value
Pmax for generation sizes of 5, 10, 20 and 80 and the para-
meters shown in Figure 4 was 23.6, 14.1, 10.3 and 3.1,
respectively. In other words, small populations ‘learn
more’ per individual, whereas larger populations ‘learn
faster’ as shown by Pmax × N, that is, 118, 141, 206 and
248, respectively. This measure therefore provides an
easy tool to judge on the efficiency of applying GAs or
related evolutionary methods. 

Figure 5 shows the influence of the mutation rate and
cross-over strategy on the average activity of N best prod-
ucts using a generation size of 20. Cutting the strings in a
chemically meaningful way only between starting materials
(option c) shows a slightly better performance compared
with allowing a DNA-like crossover at any bit (option n);
however, the latter strategy will result in children with
higher diversity as starting materials may be used that were
not part of the parent products. Increasing the mutation
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Figure 4

The influence of the generation size N on the
average fitness of the N best parents at a
given generation. N was set to 5, 10, 20 or 80
using a cross-over by cutting between starting
material genes (option c) and a fixed mutation
rate of 1%. The random selection of 80 new
products, as opposed to the GA-driven
selection, is shown by the curve ‘80-random’.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation

IC
50

 (
µM

)

B5-c-1%

B10-c-1%

B20-c-1%

B80-c-1%

80-random

0

20

40

60

80

100

120

140

160

Chemistry & Biology

cm7607.qxd  06/07/2000  03:47  Page 437



rate from 0.1% to 10% lowers the performance of the GA
by ‘destroying’ the acquired knowledge about fit strings
that is implicitly hidden in the pattern of the string. The
GA parameter set that performed best used binary encod-
ing, a 1% mutation rate and cutting between starting mate-
rials only (strategy B20-c-1%, Figure 5).

Another parameter of evolutionary optimization is the
time taken for the best solutions to be found. Figure 6
shows the activity of the most active product found during
the course of a given GA by using various parameter sets
and averaging each set over 100 parallel runs. Thus, strate-
gies B20-c-1% and B80-c-1% discover products with an
activity below 1 µM with a probability of 90% in genera-
tion 30 and 13, respectively. This corresponds to the syn-
thesis of 600 compounds for N = 20 and 1040 for N = 80.
Again, the choice of optimal parameters in real evolution-
ary experiments will also depend on how difficult it is to
synthesize the corresponding products.

The average number of products needed to find one of
these nine products by random screening is
15.360/9 = 1.707, therefore, the performance increase pro-
vided by the GA in finding the best products is 284%
(1707/600) and 164% (1707/1040) for B20-c-1% and
B80-c-1%, respectively — higher when compared with
random screening. Again, the performance of the GA is
better per individual when using smaller generation sizes
and worse when using a high mutation rate. 

Genetic algorithms learn in an implicit, heuristic manner
how to arrive at solutions with desired properties, thereby

mimicking evolution in Nature. Figure 7 shows the activ-
ity of the N selected new children at each generation for
different GA parameters. The activity of randomly
selected new compounds (20-random selection) always
remains the same on average; however, those for the GA-
driven selection increased at the beginning of the evolu-
tion process. The respective curves may be regarded as a
second and alternative measure for the implicit ‘learning’
process during a given GA. Whereas the slopes are rather
the same for different crossover strategies using a genera-
tion size of 20, a marked decrease in learning is seen for
the higher mutation rate of 10% in Figure 7. Using a
mutation rate of 100% is equivalent to random screening
(data not shown). 

After reaching a maximum, the learning decreases,
owing to the increasing depletion of active products
from our search space. The dependence on the genera-
tion size gives a similar picture as shown in Figure 7.
The shapes of the respective curves are rather similar,
but the slope and generation number of the average
activity maximum provide a tool to assess the learning
process during a GA-driven evolution. In summary, the
B20-c-1% strategy was found to be optimal with respect
to the number of used individuals, the slope and the
achieved maximum average activity increase of the chil-
dren population at generation 18. This strategy there-
fore served as a benchmark for comparison with other
optimization strategies. Thus, we used real-valued
encoding with decimal numbers (option D) and differ-
ent mutation rates (Figure 8). Essentially, the real-
valued encoding algorithm behaves similarly when

438 Chemistry & Biology 2000, Vol 7 No 6

Figure 5

Influence of the mutation rate and cross-over
strategy on the average fitness of the 20 best
parents at a given generation. The mutation
rate was set to 0.1, 1 or 10% at each bit of
the bit string. Crossover is between starting
materials genes only (option c) or also within
genes (option n). Comparison with random
selection is given by the curve 20-random.
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compared with binary encoding; however, higher muta-
tion rates are needed during the GA run and 20% was
found as the best parameter.

An alternative strategy to our GA-based approach can be
implemented by using only mutations and avoiding cross-
over. Such algorithms are known as ‘hill climbing’ or ‘sim-
ulated annealing’ algorithms in which a compound will be

selected for further mutations if its activity improves
within a certain activity range (in our case the activity
range of the population of the N best compounds). This
algorithm (see Figure 8, strategy D20-mut) is only of
advantage if some of the best compounds have been dis-
covered already. Here, the systematic variation around the
best compounds yields faster more active compounds than
the evolutionary GA approach.
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Figure 6

The activity of best reaction product found by
the GA during the course of evolution
depending on the mutation rate, cross-over
and generation size. The results are displayed
as averages from 100 parallel runs for each
GA parameter set and compared with results
from random selection (20- and 80-random).
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Figure 7

The average activity of the selected 20 new
children at each new generation for different
mutation rates and cross-over strategies. 
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Discussion
In summary, an evolutionary strategy for screening com-
pound libraries using a GA provides a valuable strategy to
discover compounds with desired properties without the
need to synthesize and test all possible compounds. The
performance of this approach can be optimized by choos-
ing appropriate parameters. A GA is especially powerful
when dealing with very large combinatorial libraries,
and/or when only a small number of compounds com-
pared with the library size can be synthesized or tested.
In our current example, neither the search space nor the
three variable parameters AA, BB and CC can be considered as
large. We therefore expect that for more relevant prob-
lems — using more variables and larger compound
libraries — the increase in efficiency will be even better
than observed in our case.

We observed that two contradictory factors influence per-
formance. On the one hand, the optimization gradient or
‘learning ability’ per individual increases by using smaller
generation sizes. On the other hand, the best solutions are
found faster when using larger generation sizes. The
optimum parameters for a given combinatorial optimiza-
tion will depend on the complexity and ‘smoothness’ of
the search space [5,10] and on the number of compounds
that can be made and tested simultaneously. This finding
was recently confirmed by Gobbi and Poppinger [11] also
for general, noncombinatorial libraries, by using a GA and

chromosomes for small molecules that were based on
topological descriptors.

Beside GAs there are several other heuristic methods that
use feedback-driven algorithms, such as simulated anneal-
ing, neural networks and hybrid versions with GAs. Suc-
cessful applications towards the discovery of biologically
active molecules have been published (see [12] for a
recent review). 

Significance
We believe that a medicinal chemist uses principles that
are similar to evolutionary algorithms, although maybe
not explicitly or consciously, during the course of a
compound optimization. The benefits of a genetic-algo-
rithm-driven small-molecule optimization approach as
presented in this current work are twofold: first, it can
be part of a fully automated system; and second, it
might be especially useful when dealing with very
complex, multidimensional search spaces. General
parameters have been determined that allow a facile
implementation of artificial evolutionary chemistry.

Materials and methods
General library synthesis
12 Amines, 80 aldehydes and 16 isocyanides were prepared as 0.1 M
solutions. An aliquot (5 µl) of each component was dispensed into
384-well microtiter plates in a combinatorial fashion to give 15,360
individual reaction products. The plates were sealed and allowed to
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Figure 8

The activity of best reaction product found by
the GA during the course of evolution
depending on decimal (option D) and binary
encoding (option B) strategies. Cross-over
was used between starting materials (option
c), whereas strategy D20-mut uses mutations
only. The results are displayed as averages
from 100 parallel runs for each GA
parameter set.
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react for 24 h, after which the solvent was evaporated at room temper-
ature for 1.5 h. Dry, crude reaction products were then dissolved in
dimethylsulfoxide to give 10 mM solutions of the products (assuming a
100% yield of the reaction to expected products). Small aliquots were
taken and subjected to mass analysis. The remainder was used in the
biological assays for thrombin inhibition.

Biological thrombin assay
The thrombin biological enzyme inhibition assay used 100, 10, 1, 0.1
and 0 µM concentrations for each of the 15.360 reaction products in
384-well plates. HNPT buffer (Hepes 100 mM, NaCl 140 mM, Peg
6000 0.1%, Tween 80 0.02%) at a pH of 7.8 was used. The assay
volumes were 15 µl buffer, 5 µl inhibitor, 20 µl thrombin solution
(1.25 nM) and 20 µl pyro-Glu–Pro–Arg-pNA (0.5 mM) solution as the
chromogenic substrate was used. The incubation time of the enzyme
with the inhibitor was 10 min. The conversion of the substrate was
measured at 405 nm in a kinetic mode over 10 min. Based on the
slopes of the kinetic substrate conversion with four different inhibitor
concentrations, 15,360 IC50 values were calculated.

Thrombin inhibitor (3)
A solution of 0.8 mmol of m-aminobenzamidine dihydrochloride and
0.8 mmol triethylamine in 20 ml tetrahydrofurane was added to 1 mmol
of o-benzyloxybenzaldehyde and 1.5 ml water to get a clear solution.
After 1 h stirring at ambient temperature to form the imine, 1 mmol
diphenylmethyl isocyanide was added. The reaction mixture was stirred
overnight. After removing the solvent under reduced pressure the
crude product was purified by preparative high-performance liquid
chromatography (HPLC) using a methanol/water/0.5% acetic acid gra-
dient. Evaporation of the solvent gave 3 as a white powder in 18%
yield; ms (ESI/TOF) for (C35H32N4O2+H)+ m/z=541.2; 1H-NMR
(DMSO-d6): d = 8.85 (d, 1H, NH), 7.44-7.39 (m, 4H, C(NH)(NH2),
7.3-7.18 (m, 16H, Ph), 7.13-7.11 (m, 3H, Ph), 7.03 (d, 1H, Ph), 6.9-
6.85 (m, 3H, Ph), 6.58 (d, 1H, NH), 6.10(d, 1H, CH), 5.71 (d, 1H, CH),
5.19 (s, 2H, CH2), 1.72 (s, 3H, acetat).
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